skip to main content


Search for: All records

Creators/Authors contains: "Mongiardino Koch, Nicolás"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available March 3, 2025
  3. Free, publicly-accessible full text available December 1, 2024
  4. Sea cucumbers (Holothuroidea) are a diverse clade of echinoderms found from intertidal waters to the bottom of the deepest oceanic trenches. Their reduced skeletons and limited number of phylogenetically informative traits have long obfuscated morphological classifications. Sanger-sequenced molecular datasets have also failed to constrain the position of major lineages. Noteworthy, topological uncertainty has hindered a resolution for Neoholothuriida, a highly diverse clade of Permo-Triassic age. We perform the first phylogenomic analysis of Holothuroidea, combining existing datasets with 13 novel transcriptomes. Using a highly curated dataset of 1100 orthologues, our efforts recapitulate previous results, struggling to resolve interrelationships among neoholothuriid clades. Three approaches to phylogenetic reconstruction (concatenation under both site-homogeneous and site-heterogeneous models, and coalescent-aware inference) result in alternative resolutions, all of which are recovered with strong support and across a range of datasets filtered for phylogenetic usefulness. We explore this intriguing result using gene-wise log-likelihood scores and attempt to correlate these with a large set of gene properties. While presenting novel ways of exploring and visualizing support for alternative trees, we are unable to discover significant predictors of topological preference, and our efforts fail to favour one topology. Neoholothuriid genomes seem to retain an amalgam of signals derived from multiple phylogenetic histories.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  5. Abstract Evidence from the earliest-known crinoids (Tremadocian, Early Ordovician), called protocrinoids, is used to hypothesize initial steps by which elements of the calyx evolved. Protocrinoid calyces are composed of extraxial primary and surrounding secondary plates (both of which have epispires along their sutures) that are unlike those of more crownward fossil and extant crinoids in which equivalent calycinal plating is strongly organized. These reductions inspired several schemes by which to name the plates in these calyces. However, the primary-secondary systems seen in protocrinoids first appeared among Cambrian stem radial echinoderms, with primaries representing centers around which secondaries were sequentially added during ontogeny. Therefore, the protocrinoid calyx represents an intermediate condition between earliest echinoderms and crownward crinoids. Position and ontogeny indicate certain primaries remained as loss of secondaries occurred, resulting in abutting of primaries into the conjoined alternating circlets characteristic of crinoids. This transformative event included suppression of secondary plating and modification or, more commonly, elimination of respiratory structures. These data indicate subradial calyx plate terminology does not correspond with most common usage, but rather, supports an alternative redefinition of these traditional expressions. Extension and adoral growth of fixed rays during calyx ontogeny preceded conjoined primaries in earliest crinoids. Restriction with modification or elimination of calyx respiratory structures also accompanied this modification. Phylogenetic analyses strongly support crinoid origination from early pentaradiate echinoderms, separate from blastozoans. Accordingly, all Tremadocian crinoids express a distinctive aggregate of plesiomorphic and apomorphic commonalities; all branch early within the crinoid clade, separate from traditional subclass-level clades. Nevertheless, each taxon within this assemblage expresses at least one diagnostic apomorphy of camerate, cladid, or disparid clades. 
    more » « less
  6. Abstract

    Time‐scaled phylogenies underpin the interrogation of evolutionary processes across deep timescales, as well as attempts to link these to Earth's history. By inferring the placement of fossils and using their ages as temporal constraints, tip dating under the fossilized birth–death (FBD) process provides a coherent prior on divergence times. At the same time, it also links topological and temporal accuracy, as incorrectly placed fossil terminals should misinform divergence times. This could pose serious issues for obtaining accurate node ages, yet the interaction between topological and temporal error has not been thoroughly explored. We simulate phylogenies and associated morphological datasets using methodologies that incorporate evolution under selection, and are benchmarked against empirical datasets. We find that datasets of 300 characters and realistic levels of missing data generally succeed in inferring the correct placement of fossils on a constrained extant backbone topology, and that true node ages are usually contained within Bayesian posterior distributions. While increased fossil sampling improves the accuracy of inferred ages, topological and temporal errors do not seem to be linked: analyses in which fossils resolve less accurately do not exhibit elevated errors in node age estimates. At the same time, inferred divergence times are biased, probably due to a mismatch between the FBD prior and the shape of our simulated trees. While these results are encouraging, suggesting that even fossils with uncertain affinities can provide useful temporal information, they also emphasize that palaeontological information cannot overturn discrepancies between model priors and the true diversification history.

     
    more » « less
  7. Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record. 
    more » « less